Analysis 2
 7 May 2024

Warm-up: If you run 114 km in 5 hours, what is your "average speed"?

Speed (or velocity)

- If you run 114 km in 5 hours, what is your "average speed"?
- If your position in meters after t seconds is

$$
y(t)=\frac{1}{10} t^{2}+2 t,
$$

calculate your "average speed" (in m / s) between $t=2$ and $t=10$.

Speed (or velocity)

- If your position after t seconds is

$$
y(t)=\frac{1}{10} t^{2}+2 t,
$$

estimate your "instantaneous speed" when $t=2$.

Speed (or velocity)

- If your position after t seconds is

$$
y(t)=\frac{1}{10} t^{2}+2 t,
$$

calculate your "instantaneous speed" exactly when $t=2$.

Analysis 1

Main topics:

- Limits
- Derivatives
- rules for individual functions (power, trig)
- rules for combining functions (Sum, Product, Quotient, Chain)
- tangent lines
- monotonicity (increasing vs. decreasing) and critical points
- concavity (concave up vs. concave down) and inflection points
- extrema (minima and maxima)
- Integrals

Analysis 1

Main topics:

- Limits
- limit as $n \rightarrow \infty$ for a sequence
- limit as $x \rightarrow \infty$ or $x \rightarrow-\infty$ for a function
- limit as $x \rightarrow a$ for a function (a is some number)
- limit as $x \rightarrow a^{-}$or $x \rightarrow a^{+}$for a function
- graphs
- calculations: algebra, Squeeze, L'H
- Derivatives
- Integrals

For the function

$$
f(x)=\frac{x^{2}-x-2}{x-2}
$$

when $x=2$,

$$
f(2)=\frac{2^{2}-2-2}{2-2}=\frac{0}{0}=\text {. }
$$

But if we look at the graph $y=\frac{x^{2}-x-2}{x-2}$, we will be able to say more
about $f(2)$.

For the function

$$
f(x)=\frac{x^{2}-x-2}{x-2}
$$

All of the x-values very close to 2 give us values of $f(x)$ very close to 3 .

In symbols, we write

$$
\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x-2}=3
$$

For the function

$$
f(x)=\frac{x^{2}-x-2}{x-2}
$$

we can also use a table of values to find $\lim f(x)$.

$$
x \rightarrow 2
$$

x	1.8	1.9	1.99	1.999	2.001	2.005	2.1
$f(x)$	2.8	2.9	2.99	2.999	3.001	3.005	3.1

Note: this "Limik" is about what happens when the input is CLOSE to a certain value but NOT exackly equal to it. We do NOT include $x=2$ in this table.

Limits as $x \rightarrow a$

In general, we write

$$
\lim _{x \rightarrow a} f(x)=L,
$$

if all values of x very close a give values of $f(x)$ that are very close to L.

The equation above is said out loud as "the limit as X goes to A of F of X equals L"
or
"the limit as X approaches A of F of X equals L ".

Limits as $x \rightarrow a$

In general, we write

$$
\lim _{x \rightarrow a} f(x)=L,
$$

if all values of x very close a give values of $f(x)$ that are very close to L.
There is an official definition:

- $\lim f(x)=L$ means that for any $w>0$ there exists $d>0$ such that $x \rightarrow a$

$$
\text { if } a-d<x<a+d \text { and } x \neq a \text { then } L-w<f(x)<L+w \text {. }
$$

Limits as $x \rightarrow a$

In general, we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

if all values of x very close a give values of $f(x)$ that are very close to L.

There is an official definition:

- $\lim f(x)=L$ means that for any $\varepsilon>0$ there exists $\delta>0$ such that $x \rightarrow a$

$$
\text { if } 0<|x-a|<\delta \text { then }|f(x)-L|<\varepsilon .
$$

Often, this definition is written with absolute value notation... and with Greek letters (epsilon ε and delta δ).

Looking at "instantaneous speed" earlier, we calculated

$$
\frac{\left(\frac{1}{10}(2.1)^{2}+4\right)-\left(\frac{1}{10}(2)^{2}+4\right)}{2.1-2}=2.41
$$

and

$$
\frac{\left(\frac{1}{10}(2.001)^{2}+4\right)-\left(\frac{1}{10}(2)^{2}+4\right)}{2.001-2}=2.4001
$$

How do we know for sure that

$$
\lim _{t \rightarrow 2} \frac{\left(\frac{1}{10} t^{2}+2 t\right)-\left(\frac{1}{10}(2)^{2}+4\right)}{t-2}=2.4 ?
$$

Example: find $\lim _{x \rightarrow 5} \frac{x-5}{x^{2}-25}$.
Method 1: table

x	4.9	4.95	4.99	4.999	5.001	5.005	5.02	5.1
$f(x)$								

Method 2: graph
Method 3: algebra

Limil properties

For any numbers a and c,

- $\lim c=c$ and
$x \rightarrow a$
- $\lim x=a$.
$x \rightarrow a$

Examples: $\lim _{x \rightarrow 6}(27)=27$ and $\quad \lim _{x \rightarrow 6}(x)=6$.

These should not be surprising.

Limit properties

If the limits all exist and are finite, then

- $\lim _{x \rightarrow a}(f(x)+g(x))=\left(\lim _{x \rightarrow a} f(x)\right)+\left(\lim _{x \rightarrow a} g(x)\right)$,
- $\lim _{x \rightarrow a}(f(x) \cdot g(x))=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$,
- $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$,

- $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$ if f is a "nice" function.

$$
\text { - } \lim _{x \rightarrow a}(c \cdot f(x))=c \cdot\left(\lim _{x \rightarrow a} f(x)\right)
$$

Later we will see exactly when $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$ is allowed.
For now, it is enough to know that...

- any polynomial
- This includes x^{2}.
- $\sqrt[n]{x}$
- $\sin (x)$ and $\cos (x)$
- e^{x} and a^{x} with $a>0$
- $\ln (x)$ and $\log _{b}(x)$ with $b>0$
can all be used safely in this limit rule.
*You might only be allowed to use $x \geq 0$ or $x>0$ with these functions.

Example: Calculate $\lim x^{2}-15 x+9$ using the limit properties.

$$
x \rightarrow 3
$$

$$
\begin{aligned}
\lim _{x \rightarrow 3} x^{2}-15 x+9 & =\left(\lim _{x \rightarrow 3} x^{2}\right)-\left(\lim _{x \rightarrow 3} 15 x\right)+\left(\lim _{x \rightarrow 3} 9\right) \\
& =\left(\lim _{x \rightarrow 3} x\right)^{2}-15\left(\lim _{x \rightarrow 3} x\right)+\left(\lim _{x \rightarrow 3} 9\right) \\
& =(3)^{2}-15 \cdot(3)+(9) \\
& =-27
\end{aligned}
$$

This is same as the value of $x^{2}-15 x+9$ itself when $x=3$.
I will say more later about when we can find limits just by plugging in an x value.

The official definition

- $\lim f(x)=L$ means that for any $\varepsilon>0$ there exists an X such that $x \rightarrow \infty$

$$
\text { if } x>X \text { then }|f(x)-L|<\varepsilon \text {. }
$$

and a similar one for " lim " can be difficult to understand at first, but these $x \rightarrow-\infty$
limits are very easy to see in graphs.

Limits as $x \rightarrow \pm \infty$

The line $y=c$ is a horizontal asymptote of the graph $y=f(x)$ if

$$
\lim _{x \rightarrow-\infty} f(x)=c \text { or } \lim _{x \rightarrow \infty} f(x)=c .
$$

Examples:
$f(x)=\frac{8 x^{2}+30 x-9}{4 x^{2}+5}$ has a horizontal asymptote at $y=2$.

- $f(x)=\frac{10^{x}}{10^{x}+58}$ has a horizontal asymptote at $y=1$
and also at $y=0$.

It is often helpful to think of

$$
\infty-5=\infty, \quad \frac{\infty}{2}=\infty, \quad \frac{14}{\infty}=0, \quad \infty+\infty=\infty
$$

sometimes, but be careful! We cannot say

$$
\infty-\infty=0 \quad \text { or } \quad \frac{\infty}{\infty}=1
$$

because, for example,

$$
\lim _{x \rightarrow \infty} \frac{x+1}{2 x}=\frac{1}{2}, \quad \lim _{x \rightarrow \infty} \frac{2^{x}}{2 x+1}=\infty, \quad \lim _{x \rightarrow \infty} \frac{\sqrt{x}}{2 x+1}=0
$$

are all " $\frac{\infty}{\infty}$ ".

There is no way to simplify $\frac{\infty}{\infty}$ that always works.
This is an example of an indeterminate form. Other indeterminate forms include

$$
\infty-\infty, \quad \frac{0}{0}, \quad 0 \times \infty, \quad 0^{0}, \quad 1^{\infty}, \quad \infty^{0} .
$$

Depending on what formulas are causing 0 or $\pm \infty$ to appear, limits with these patterns can have many different values.

Infinite limits

Sometimes the limit as x approaches some finite point will be ∞ or $-\infty$.
For example, $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$.
This means that for values of x very close to 0 , the values of $f(x)$ are all extremely large.

Some limit properties, such as

$$
\lim _{x \rightarrow a}(f(x)+g(x))=\left(\lim _{x \rightarrow a} f(x)\right)+\left(\lim _{x \rightarrow a} g(x)\right),
$$

do not work with infinite limits.

Patterns like $\infty-\infty$ and $\frac{\infty}{\infty}$ are indeterminate forms. We can not just say that " $\infty-\infty=0$ " because subtracting functions with infinite limits can give many different answers. Both

$$
\text { - } \lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{x^{2}}\right)=0 \quad \text { - } \lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{x^{4}}\right)=-\infty
$$

are " $\infty-\infty$ " in some way.

$$
y=\frac{1}{x^{2}} \quad y=\frac{1}{x}
$$

$\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$

$\lim _{x \rightarrow 0} \frac{1}{x}$ doesn k exist

One-sided limits

We write

$$
\lim _{x \rightarrow a^{-}} f(x)
$$

for the "limit as x approaches a from the left" or "... from below". This means we only look at x values that are less than a.

Similarly,

$$
\lim _{x \rightarrow a^{+}} f(x)
$$

means the "limit as \boldsymbol{x} approaches \boldsymbol{a} from the right" or "... from above", where we only look at x values that are more than a.

One-sided limits

We write

$$
\lim _{x \rightarrow a^{-}} f(x)
$$

for the "limit as x approaches a from the left." This means we only look at x values that are less than a.

Example: $\lim _{x \rightarrow 0^{-}} x \sqrt{1+\frac{1}{x^{2}}}$

One-sided limits

Note: writing

$$
4^{+}
$$

by itself does not mean anything (like $\sqrt{ }$ or \mid | alone). This should only be written as part of a limit:

$$
\lim _{x \rightarrow 4^{+}} f(x) .
$$

Some books use $\lim _{x \not \bigwedge^{4}} f(x)$ and $\lim _{x>4} f(x)$ instead of $\lim _{x \rightarrow 4^{-}} f(x)$ and $\lim _{x \rightarrow 4^{+}} f(x)$.

One-sided limits

All of the limit rules for functions, such as

- $\lim _{x \rightarrow a}(f(x)+g(x))=\left(\lim _{x \rightarrow a} f(x)\right)+\left(\lim _{x \rightarrow a} g(x)\right)$,
can also be used with one-sides limits:
- $\lim _{x \rightarrow a^{-}}(f(x)+g(x))=\left(\lim _{x \rightarrow a^{-}} f(x)\right)+\left(\lim _{x \rightarrow a^{-}} g(x)\right)$,
- $\lim _{x \rightarrow a^{+}}(f(x)+g(x))=\left(\lim _{x \rightarrow a^{+}} f(x)\right)+\left(\lim _{x \rightarrow a^{+}} g(x)\right)$.

One-sided limits are related to standard limits in the following way:

> If $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ have different values, or if at least one of them does not exist, then $\lim _{x \rightarrow a} f(x)$ does not exist.

Logically, this also means that

- if $\lim _{x \rightarrow a} f(x)$ exists then $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$.

$$
x \rightarrow a \quad x \rightarrow a^{-} \quad x \rightarrow a^{+}
$$

